Xianbang Wang

Sep $2023 \sim Now$

Sep 2018 \sim Now

EDUCATION

IIIS, Tsinghua University Pre-college Program

The High School Affiliated to Renmin University of China $Middle School \ \ \ High \ \ school$

Research interests

Deep Learning, Computer Vision, Reinforcement Learning, Algorithms.

Honors

Gold Medal International Mathematics Olympiad (IMO)	2024
Gold Medal (9th Place)	
Chinese Mathematics Olymiad (CMO)	2023 & 2024
Silver Medal National Olymiad in Informatics (NOI)	2021 & 2022
17th Place in Open Contest USA Computing Olympiad (USACO)	2022

INTERNSHIPS

Undergraduate Research in Computer Vision	
Supervised by Prof. Kaiming He, MIT	$2025.2 \sim \text{Now}$
Conduct research at deep visual generative models, including Diffusion Models,	Flow Models and Nor-
malizing Flows. Develop model codebases and workflows in Google TPU.	

Tencent Spark Program

Tencent 2023 (Student) & 2024 (TA) A 1-week program for high school students to experience the cutting-edge technologies in AI and quantum computing, and also the working environment. I was selected as the "challenge star" of quantum track in 2023 and a teaching assistant in medical AI track in 2024.

Projects

Randomized Techniques in Graph Algorithms 2024.10 https

https://github.com/PeppaKing8/algdesign-project

Project for the course *Algorithm Design* at IIIS, Tsinghua University, completed in a team of 2. This project receives 6 bonus points. Personal contribution includes:

- Study randomized algorithms in APSP, MST and Exact Matching.
- Implement and analyze the performance of a randomized APSP algorithm which incorporates fast matrix multiplication.
- Propose a NP-complete problem "Optimal Point Traversing Path", and design a randomized algorithm to solve a special case.

Customized Cloth-Fluid Simulation System Using C++ and CUDA $2024.10 \sim 2024.12$ https://github.com

https://github.com/HACLINE/ACG_Project

Project for the course *Advanced Computer Graphics* at IIIS, Tsinghua University, completed in a team of 2. This project is one of the top-3 projects on simulation track. Personal contribution includes:

- Implement the point-based cloth simulation method (XPBD) and the cloth-fluid coupling pipeline including collision detection, constraint solving and rendering. CUDA acceleration is utilized.
- Implement fully customized simulation: users can create and edit cloth and fluid objects.

Do LLMs Outperform Multi-task Learning Expert in Medical Report Generation? 2024.12 https://github.com/Lyy-iiis/Crayon-new

Project for the course *Natural Language Processing* at IIIS, Tsinghua University, completed in a team of 3. This project is selected for class oral presentation. Personal contribution includes:

- Examine the performance of LLMs on medical report generation tasks, showing the downside of fine-tuned LLMs compared with experts learning from scratch in domain-specific language tasks.
- Collaborate on designing the multi-task learning method.

Diffusion Policy Needs Careful Visual Extractor Design 2024.12 https://github

https://github.com/PeppaKing8/EAIproject

Project for the course Embodied AI at IIIS, Tsinghua University, completed in a team of 3. Personal contribution includes:

- Examine different visual extractors in Diffusion Policy, surprisingly observing the importance of the simplicity of the visual extractor (simple CNN without pooling and normalization works the best).
- Devise a new depth map preprocessing method to improve the quality of information captured of the visual extractor.

SKILLS

Programming Languages: Python, C/C++, Javascript. **Tools:** PyTorch, Jax, MATLAB, Git, LaTeX. **Languages:** English (Fluent), Chinese (Native).

ADDITIONAL INFORMATION

Transript at IIIS

All of the *professional* courses taken at IIIS is shown below.

Year-Semester	Course Title	Credit	Grade
	Introduction to Computer Science	3	А
	Introduction to Programming in C/C++	2	A+
2023-Autumn	Calculus A (1)	5	Α
	Linear Algebra	4	А
	Mathematics for Computer Science and Artificial Intelligence	4	A+
	Calculus A (2)	5	А
2024-Spring	General Physics (1)	4	A–
	Abstract Algebra	4	A+
	Advanced Computer Graphics	4	А
	Natural Language Processing	3	A+
2024-Autumn	Machine Learning	4	A+
	Algorithm Design	4	A+
	Artificial Intelligence: Principles and Techniques	3	А
	Embodied AI	3	А
	General Physics (2)	4	Α

${\bf Self\text{-}Studied/Audited\ courses}$

- Deep Learning. Instructor: Yi Wu, IIIS, Tsinghua University.
- CS285: Deep Reinforcement Learning. Instructor: Sergey Levine, UC Berkeley.
- 6.S978: Deep Generative Models. Instructor: Kaiming He, MIT.
- 6.4210: Robotic Manipulation. Instructor: Russ Tedrake, MIT.